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ABSTRACT

We prove recurrence relations for a general class of multivariate B-

splines, obtained as 'projections' of convex polyhedra. Our results are

simple consequences of Stokes' theorem and include, as special cases, the

recurrence relations for the standard multivariate simplicial B-spline.
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SIGNIFICANCE AND EXPLANATION

Because of their local support, finite elements play an important role as

basis functions for spaces of smooth piecewise polynomials. We have found

that some standard finite elements can be obtained as 'projections' of simple

convex polyhedra. This leads in a simple way to recurrence relations for the

efficient evaluation of such finite elements.

Even in the previously known special case of simplicial B-splines,

studied in much detail by W. Dahmen and C. A. Micchelli, the argument of the

report leads to simplifications.

The responsibility for the wording and views expressed in this descriptive

summary lies with MRC, and not with the authors of this report.
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We wish to point out what, in hindsight, seems obvious, namely that the recurrence

relations for multivariate B-splines established by C.A. Micchelli [19] and reproved in

various different ways by W. Dahmen [6], C.A. Micchelli [201, K. Hdllig [15] and H.

Hakopian [14] (and perhaps others) are special cases of more general and vory simple

recurrence relations which are a simple consequence of Stokes' theorem.

To recall, following the lead of I.J. Schoenberg [21], the multivariate B-spline

M(.I0,..., n) was defined in [1] by the rule

Vol nm{z e R Pz x} conv{x ,... x n
M(XIx 0 n .... v Xn )  Vol nnxV{xeR....xn x

n 0 n

with x0,...,x n  points in Tn and conv{x0 ,...,x n }  their convex hull, with Volk(K)

the k-dimensional volume of the set K , and

P:. + R0 z -

Such a B-spline is a nonnegative piecewise polynomial function of degree at most n-m , its

support is conv{PZ0 ... ,Pz , and it is in Cn
-m - 1 

as long as the "knots" x.... ,xn

are in general position.

It was hoped that these functions could be made to play the same basic role in the

analysis and use of smooth multivariate piecewise polynomial functions that their much

older univariate version (introduced by Curry and Schoenberg [4-5]) had assumed in the

univariate spline theory. These hopes have already borne some fruit; see Micchelli [201,

Dahmen [7-9], Dahmen and Micchelli [10-12], Goodman and Lee [13], H811ig [14]. The first

step in this development was taken by C.A. Micchelli [19] who proved the followinq.
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Theor I (C. A. Micchelli).

(i) If z = E Xiz i with E, = 0 , then

DzM(IxO,...,x) n X iM(-x0 ,.... ,x i1,ai+1,...,X n )

(ii) If X = E Ai PX with ZX = 1 , then

(n-m) M(xlx 0 ... xn) - n E XM(xlz0 .... XilXi+ 1 ... 0x n )

Here, D f :- E z(i) Di f , with Dif the partial derivative of f with respect

to its i-th argument. Further, the equalities asserted in the theorem must in general be

interpreted in the sense of distributions. In this connection, Micchelli's starting point

was the observation that

fm( '"1z 0 .... ) *
1 tn-1

nl f... f ( o O)+x0  tl(x-X0) .+'+ tn(xn-xn ))dtn ... dt

0 0

These integrals play a crucial role in Kergin interpolation [17-19] . They also appear in

the Hermite-Genocchi formula for the n-th divided difference.

Consider now, more generally, a polyhedral convex body B in Rn , whose boundary

aB is the essentially disjoint union of finitely many (n-1)-dimensioaal convex bodies Bi

with corresponding outward normal ni . Let M and Mi denote the corresponding

distributions on fi defined by the rule

M f *oP
B
Bf , all test functionsIi : * oP

B.
I

Here , denotes the k-dimensional integral over the convex set K in case K spans a

* k-dimensional flat.

Theorem 2.

(i) = - <zlni> , all z eRn
iZ i

(ii) (n-rn) M(Pz) E <b -z~, Mi(Pz , all z Rn

-2-



Here, bi  stands for an arbitrary point in the flat spanned by Bi , hence the

coefficient <bi-zlni> is simply the signed distance of z from that flat.

The proof of [i) is imediate:

(CD2e" -1!()#.)op - - f D(*l) " - I <in *oP
B B

As to (ii), we follow Hakopian [141 who derives Theorem 1.(ii) from the following

B-spline identity:

(D-, )M( .1 O .... xzn ) - (n-m)M( .Ig0,..., n)
- M(C.x,...,zi 

1 .... n

Here, D stands for the differential operator given by the rule

k(Df)(X) Z x •j)(D f)(X)
J-1

!or a function f of k variables.

Corvespondingly, we prove

(iii) DM = (n-m)M - <bin >M

as follows:
m m

(DM) = - E E [Dj(x()4)(Pz)dx - ,, - E [xj, ,j1Px) dx
B j-1 B J-1

n
=-mM* - f Z x(j) D (.oP)(x) dx

B J=1

n
= (n-m)M$ - E D,[x(j)(op)J](x) dx

B j=1

= (n-m)MO - Z f <xIn> (,o)(x) d
B1

and this proves (iii) since <.In > is constant on Bi .

3
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II
Now, to prove (ii), conclude from (i) and (iii) that, for any z with Pz x ,

0 = (D - Dps)M(x)

= (n-m)M(z) - E <b.in >M (x) + E <z1U >M (x)

Remarks. (a) The convexity assumption is sufficient for the intended application but

could, of course, be relaxed.

(b) Repeated application of Theorem 2.(i) shows that M is a piecewise polynomial of

degree at most n-m , with possible discontinuities only across convex sets of dimension

m-1 of the form P[F] , with F a face of B . Precisely, M e Cn-d
-
2 with d the

greatest integer with the property that a d-dimensional face of B is projected by P

into an (m-1)-dimensional set.

(c) This study was motivated by the realization that many standard finite elements

could be obtained as such 'projections' of simple geometric bodies and by the hope that, by

using bodies other than simplices, the resulting piecewise polynomial functions M might

be simpler and conform more easily to standard meshes. First results along these lines are

contained in 121 and 13].
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